
CSC301

Asynchronous patterns & Object pools



Multi-Threading

● Multiple threads of execution running “simultaneously”

○ Well … not exactly simultaneously, but sharing the CPU makes it seem like it

○ Java also supports creating new processes, but threads are much more common.

● Multi-threaded programming is traditionally considered difficult

○ Easy to get things wrong

For example: Deadlock, race condition, starvation, etc.

○ Hard to debug (mainly because the order of execution is nondeterministic)

https://docs.oracle.com/javase/8/docs/api/java/lang/ProcessBuilder.html


Java & Multi-Threading

● The API’s related to threads (and concurrency) evolved over the years

● Initially, there was just Thread

○ Either extend it (i.e. create a subclass) or construct it with a Runnable

○ Once you create a Thread instance, you can start it

○ Fairly low-level methods allow synchronization and inspection of threads

● Let’s see a short code example

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#start--
https://github.com/csc301-fall-2016/async-example


Java Threads - More Control

● Threads are resources (just like memory or CPU time)

● Sometimes we want more control over how resources are managed.
For example:

○ Limit the number of active threads

○ Reuse threads, instead of creating new ones

○ Certain tasks should not compete with one another for CPU



Resource Pool

● Object Pool is a common design pattern (aka Resource Pool)

○ As the name suggests, an object that is responsible for managing a pool of resources

■ The resource pool manages the lifecycle of resources (e.g. construction, destruction, etc.)

○ Two of the most common examples for resources that can benefit from pooling:

■ Threads

■ Database connections

○ ScheduledThreadPoolExecutor is an example of a thread pool that comes built-in with Java

■ Here is really nice tutorial you might find useful

https://en.wikipedia.org/wiki/Object_pool_pattern
http://martinfowler.com/bliki/ResourcePool.html
https://en.wikipedia.org/wiki/Object_pool_pattern
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ScheduledThreadPoolExecutor.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ScheduledThreadPoolExecutor.html
http://winterbe.com/posts/2015/04/07/java8-concurrency-tutorial-thread-executor-examples/


Asynchronous Callback

● Instead of waiting for a function to return a result, tell it in advance what you 
want to do with its result.

● That is:

○ When calling the function, pass a callback

○ The function runs in a separate thread

○ Once the function is done, the callback is called (with function’s result)



Asynchronous Callback

● Common example: AJAX

● Very natural in some languages (e.g. JavaScript)

● Java 8 makes things more convenient with lambda expressions and 
CompletableFuture

○ A nice tutorial on using CompletableFuture

https://en.wikipedia.org/wiki/Ajax_(programming)
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
http://www.deadcoderising.com/java8-writing-asynchronous-code-with-completablefuture/


Asynchronous Callback

● Asynchronous programming fits well with many of the tasks modern 
programmers deal with (because of the nature of the Internet)

● That being said, it doesn’t always fit well with the syntax that modern 
programmers are used to

○ Chaining multiple methods can result in code that is very hard to read

■ If you are not careful, you might get yourself into a callback hell

○ Exceptions need to be handled more carefully

http://callbackhell.com/

